Visualizing High-Dimensional Vectors

The next two examples are drawn from:
http://setosa.io/ev/principal-component-analysis/
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The issue Is that as humans
we can only really visualize
up to 3 dimensions easily

Goal: Somehow reduce the dimensionality of the data
poreferably to 1, 2, or 3



Principal Component Analysis (PCA)

How to project 2D data down to 1D?
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Hervé Abdi and Lynne J. Williams. Principal component analysis. Wiley Interdisciplinary Reviews:
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Principal Component Analysis (PCA)

How to project 2D data down to 1D
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Simplest thing to try: flatten to one of the red axes



Principal Component Analysis (PCA)

How to project 2D data down to 1D
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Simplest thing to try: flatten to one of the red axes

(We could of course flatten to the other red axis)



Principal Component Analysis (PCA)

How to project 2D data down to 1D?



Principal Component Analysis (PCA)

How to project 2D data down to 1D?



Principal Component Analysis (PCA)

How to project 2D data down to 1D

Most variability is along
this green direction

But notice that most of the variability in the data is not aligned
with the red axes!



Principal Component Analysis (PCA)

How to project 2D data down to 1D?




Principal Component Analysis (PCA)

How to project 2D data down to 1D?

The idea of PCA actually works for 2D = 2D as well
(and just involves rotating, and not “flattening” the data)



Prmmpal Component AnaIyS|s (PCA)

before
“flattening”

The idea of PCA actually works for 2D = 2D as well
(and just involves rotating, and not “flattening” the data)

1

2nd green axis chosen to be 90° (“orthogonal”) from first green axis



Principal Component Analysis (PCA)

e Finds top k orthogonal directions that explain the most
variance in the data

e 1st component: explains most variance along 1
dimension

* 2nd component: explains most of remaining variance
along next dimension that is orthogonal to 1st
dimension

e “FHatten” data to the top k dimensions to get lower
dimensional representation (if k < original dimension)



Principal Component Analysis (PCA)

3D example from:
http://setosa.io/ev/principal-component-analysis/



Principal Component Analysis (PCA)

Demo



PCA reorients data so axes explain
variance in “decreasing order”
-> can “flatten” (project) data onto a
few axes that captures most variance



4

Image source: http://4.bp.blogspot.com/-UsQEgoh1jCUNINCANOETCI/AAAAAAAAGPS/
Hea8UtE_1c0/s1600/Blog%2B1%2BIMG_1821.jpg



2D Swiss Roll

PCA would just flatten this thing and
lose the information that the data actually
lives on a 1D line that has been curved!



PCA would squash down th|s SWiss
roll (like stepping on it from the top)

mixing the red & white parts

Image source: http://4.bp.blogspot.com/-UsQEgoh1jCUNINCANOETCI/AAAAAAAAGPS/
Hea8UtE_1c0/s1600/Blog%2B1%2BIMG_1821.jpg



2D Swiss Roll




2D Swiss Roll




2D Swiss Roll




2D Swiss Roll




2D Swiss Roll




2D Swiss Roll

This is the desired result



3D Swiss Roll

Projecting down to any 2D plane puts points
that are far apart close together!



3D Swiss Roll

Projecting down to any 2D plane puts points
that are far apart close together!

Goal: Low-dimensional representation where similar colored points
are near each other (we don’t actually get to see the colors)



Manifold Learning

* Nonlinear dimensionality reduction (in contrast to PCA
which is linear)

e Fnd low-dimensional “manifold” that the data live on

Basic idea of a manifold:
1. Zoom in on any point (say, x)

2. The points near x look like
they’re in a lower-dimensional
Euclidean space
(e.g., a 2D plane in Swiss roll)




Do Data Actually Live on Manifolds?
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Image source: http://www.columbia.edu/~jwp2128/Images/faces.|peg



Do Data Actually Live on Manifolds?
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Do Data Actually Live on Manifolds?
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Do Data Actually Live on Manifolds?
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Manifold Learning with Isomap

Step 1: For each point, fino (e.qg., find closest 2
ts nearest neighbors, and g neighbors per point
build a road (“edge”) and add edges to
between them A them)
o -® Step 2: Compute

shortest distance from
each point to every other
point where you’re only
allowed to travel on the
roads

Step 3: It turns out that given all the distances between pairs of
points, we can compute what the points should be
(the algorithm for this is called multidimensional scaling)



Isomap Calculation Example

In orange: road lengths

2 nearest neighbors of A: B, C
A 5 ¢ 2nearestneighbors of B: A, C
] 2 nearest neighbors of C: B, D
5D 2nearest neighbors of D: C, E
= 2 nearest neighbors of E:

Build "symmetric 2-NN" graph
(add edges for each point to
its 2 nearest neighbors)

/-V

Shortest distances between
every point to every other
point where we are only
allowed to travel along the
roads
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Isomap Calculation Example

In orange: road lengths

2 nearest neighbors of A: B, C
A 5 ¢ 2nearestneighbors of B: A, C
] 2 nearest neighbors of C: B, D
5D 2nearest neighbors of D: C, E
= 2 nearest neighbors of E:

Build "symmetric 2-NN" graph
(add edges for each point to
its 2 nearest neighbors)

/-V

Shortest distances between
every point to every other
point where we are only
allowed to travel along the
roads

This matrlx gets fed mto
multidimensional scaling 1o get
1D version of A, B, C, D, E

The solution is not unique!
16 13 38 5 0



Isomap Calculation Example

Multidimensional scaling demo



3D Swiss Roll Example

Joshua B. Tenenbaum, Vin de Silva, John C. Langford. A Global Geometric
Framework for Nonlinear Dimensionality Reduction. Science 2000.



Some Observations on Isomap

The quality of the result
0= critically depends on the
nearest neighbor graph

& -®
Ask for nearest neighbors to Allow for nearest neighbors
be really close by to be farther away
There might not be enough Might connect points that
edges shouldn’t be connected

In general: try different parameters for nearest neighbbor graph
construction when using Isomap + visualize



t-SNE
(t-distributed stochastic
neighbor embedding)



t-SNE High-Level Idea #1

* Don't use deterministic definition of which points are neighbors

e Use probabilistic notation instead
0.2

0.15
0.1

0.05




t-SNE High-Level Idea #2

* |nlow-dim. space (e.g., 1D), suppose we just randomly
assigned coordinates as a candidate for a low-dimensional
representation for A, B, C, D, E (I'll denote them with primes):

00— 0—0
C'B'" E A D

e With any such candidate choice, we can define a probabillity
distribution for these low-dimensional points being similar

0.3
0.225
0.15
0.075

¢ \O
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t-SNE High-Level Idea #3

e Keep improving low-dimensional representation to make the
following two distributions look as closely alike as possible
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0
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Technical Detail for t-SNE

Fleshing out high level idea #1

Suppose there are n high-dimensional points x1, x2, ..., Xn

1xi—1°

For a specific point /, point / picks pointj (# /) to = exp( 2072 )
: : T JI = Xi—xr |2
be a neighbor with probability: Zk% exp( | =" I )

1

oi (depends on /) controls the probabillity in which point j would be picked by i
as a neighbor (think about when it gets close to O or when it explodes 1o )

oi is controlled by a knob called 'perplexity’
(rough intuition: it is like selecting small vs large neighborhoods for Isomap)

Pji + Pi|j
2N

Points / and j are "similar” with probability:  p;; =



Technical Detail for t-SNE

Fleshing out high level idea #2

Denote the n low-dimensional points as x1', x2', ..., Xn

1
1+ =72

Low-dim. points / and j are "similar® with probability: qi; = 1

2 ekotm T

Fleshing out high level idea #3

Use gradient descent (with respect to gi)) to minimize:

> piylog
i di,



